The Use of Feature Selection Techniques in the Context of Artificial Neural Networks
نویسندگان
چکیده
Feature selection is an important issue, especially for classification problems where artificial neural networks are involved. It is known that using large number of inputs can make the network overspecific and require significantly longer time to learn the characteristics of the training data. Such over-specificity also reduces the generalisation capabilities of a neural network, so the network may fail to classify new data outside the range of the training data. Although feature selection methods have been used in remote sensing studies for many years, their use in the context of artificial neural networks has not been fully investigated. This paper sets out some results of an investigation of feature selection techniques, specifically the separability indices, in the problem of determining the optimum network structure in terms of achieved accuracy. For this purpose, separability indices, including divergence, transformed divergence, Bhattacharyya distance and Jeffries-Matusita distance, and the Mahalanobis distance classifier (MDC) based on two accuracy measures are employed to determine the best eight-band combination out of a 24 band multitemporal dataset. Two search procedures, sequential forward selection and the genetic algorithm, have been used to search for the best band combinations using separability measures as evaluation functions.
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملانتخاب ویژگیهای مؤثر کلینیکی و ژنتیکی بهمنظور پیشبینی دوز وارفارین با استفاده از شبکههای عصبی مصنوعی
Background: Warfarin is one of the most common oral anticoagulant, which role is to prevent the clots. The dose of this medicine is very important because changes can be dangerous for patients. Diagnosis is difficult for physicians because increase and decrease in use of warfarin is so dangerous for patients. Identifying the clinical and genetic features involved in determining dose could be us...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000